

CBSE NCERT Based Chapter wise Questions (2025-2026)

Class-XII

Subject: Mathematics

Total : 11 Marks (expected) [MCQ-1 Mark, VSA-2 Marks, SA-3 Marks, LA-5 Marks]

Chapter Name : *Vector Algebra* (Chap : 10)

Level 1 & 2 Combined

SECTION - A

MCQ Type (1 mark each):

1. If $|\vec{a}|=4$, $|\vec{b}|=2\sqrt{3}$ and $|\vec{a} \times \vec{b}|=12$, then the angle between the vectors \vec{a} and \vec{b} is

(A) $\frac{\pi}{3}$ (B) $\frac{\pi}{6}$ (C) $\frac{\pi}{4}$ (D) $\frac{\pi}{2}$

[Hints : Cross product]

2. If $\vec{a} = 2\hat{i} + 4\hat{j} - 3\hat{k}$, $\vec{b} = \hat{i} + 2\hat{j} + m\hat{k}$ and $|\vec{a} \times \vec{b}| = 0$, then the value of m is

(A) $\frac{3}{2}$ (B) -3 (C) $-\frac{3}{2}$ (D) 3

[Hints : Cross product]

3. If $\vec{a} = 2\hat{i} - 3\hat{j} + 4\hat{k}$ and $\vec{b} = -6\hat{i} + 9\hat{j} - 12\hat{k}$, then

(A) $\vec{a} \perp \vec{b}$ (B) $\vec{a} \parallel \vec{b}$
(C) angle between the vectors is $\frac{\pi}{3}$ (D) none

[Hints : dot product]

4. Find the scalar projection of $\vec{a} = 3\hat{i} - \hat{j} + 4\hat{k}$ on $\vec{b} = 2\hat{i} + 3\hat{j} - 6\hat{k}$.

(A) -1 (B) -2 (C) -3 (D) -4

[Hints : Concept of projection of \vec{a} on \vec{b}]

5. If \vec{a} and \vec{b} are the diagonals of a rhombus. Then

(A) $\vec{a} \cdot \vec{b} = 0$ (B) $\vec{a} \times \vec{b} = 0$ (C) $\vec{a} \cdot \vec{b} = \frac{\pi}{2}$ (D) $\vec{a} \times \vec{b} = \frac{\pi}{2}$

[Hints : Diagonals are perpendicular]

6. For what values of p and q the vectors $2\hat{i} + p\hat{j} - 3\hat{k}$ and $q\hat{i} - 4\hat{j} + 2\hat{k}$ are parallel?

(A) $p = -\frac{4}{3}$, $q = 6$ (B) $p = 6$, $q = -\frac{4}{3}$ (C) $p = 6$, $q = -4$ (D) $p = -4$, $q = 6$

[Hints : Concept of collinear vectors]

7. If $|\vec{\alpha}| = |\vec{\beta}| = |\vec{\gamma}|$ and $\vec{\alpha} + \vec{\beta} + \vec{\gamma} = \vec{0}$ then $\vec{\alpha} \cdot \vec{\beta} + \vec{\beta} \cdot \vec{\gamma} + \vec{\gamma} \cdot \vec{\alpha} = ?$

(A) $-\frac{3}{5}$ (B) $-\frac{3}{2}$ (C) $\frac{2}{3}$ (D) $-\frac{2}{3}$

[Hints : Use $(\vec{a} + \vec{b} + \vec{c})^2 = \vec{0}$]

SECTION - B

Very Short Answer (VSA) (2 marks each questions):

1. If $\vec{a} = 2\hat{i} - \hat{j} + 3\hat{k}$ and $\vec{b} = 3\hat{i} + \hat{j} - 2\hat{k}$, find the angle between the vectors $(\vec{a} + \vec{b})$ and $(\vec{a} - \vec{b})$.

[Hints : dot product of $(\vec{a} + \vec{b})$ and $(\vec{a} - \vec{b})$]

2. Find the vector projection of \vec{b} on \vec{a} where $\vec{a} = \hat{i} + 2\hat{j} + 2\hat{k}$ and $\vec{b} = \hat{j} + 2\hat{k}$.

[Hints : Vector projection of \vec{x} on \vec{y}]

3. If two vectors \vec{a} and \vec{b} are such that $|\vec{a} \cdot \vec{b}| = |\vec{a} \times \vec{b}|$. Then find the angle between \vec{a} and \vec{b} .

[Hints : Definitions of dot and cross product]

4. Adjacent sides of a parallelogram are $\vec{a} = 3\hat{i} - \hat{j} + 4\hat{k}$ and $\vec{b} = \hat{i} - \hat{j} + \hat{k}$ find its area?

[Hints : Area $|\vec{a} \times \vec{b}|$]

5. In the question 4 if \vec{a} and \vec{b} vectors are the diagonals of the parallelogram then what will be the area of the parallelogram?

[Hints : Use, area = $\frac{1}{2} |\vec{d}_1 \times \vec{d}_2|$]

6. Prove that $(\vec{a} \times \vec{b})^2 + (\vec{a} \cdot \vec{b})^2 = |\vec{a}|^2 |\vec{b}|^2$

[Hints : Lagranges identity]

7. Prove that if $\vec{a} + \vec{b} + \vec{c} = 0$ show that, $\vec{a} \times \vec{b} = \vec{b} \times \vec{c} = \vec{c} \times \vec{a}$

[Hints : Take $\vec{a} \times$ with $(\vec{a} + \vec{b} + \vec{c})$ and again $\vec{b} \times$ with $(\vec{a} + \vec{b} + \vec{c})$]

SECTION - C

Short Answer (SA) (3 marks each questions):

1. Find the distance of the point $(2, -1, 3)$ from the line $\vec{r} = (2\hat{i} - \hat{j} + 2\hat{k}) + \mu(3\hat{i} + 6\hat{j} + 2\hat{k})$ measured parallel to z-axis.

[Hints : Vector equation of line]

2. Find the point of intersection of the line $\vec{r} = (3\hat{i} + \hat{k}) + \mu(\hat{i} + \hat{j} + \hat{k})$ and the line through $(2, -1, 1)$ parallel to the z axis. How far is this point from the z-axis?

[Hints : Vector equation of lines]

3. Verify that lines given by $\vec{r} = (1 - \lambda)\hat{i} + (\lambda - 2)\hat{j} + (3 - 2\lambda)\hat{k}$ and $\vec{r} = (\mu + 1)\hat{i} + (2\mu - 1)\hat{j} - (2\mu + 1)\hat{k}$ are skew lines. Hence, find shortest distance between the lines.

[Hints : Skew lines and shortest distance]

4. During a cricket match, the position of the bowler, the cricket keeper and leg slip fielder are in a line given by $\vec{B} = 2\hat{i} + 8\hat{j}$, $\vec{W} = 6\hat{i} + 12\hat{j}$ and $\vec{F} = 12\hat{i} + 8\hat{j}$ respectively. Calculate the ratio in which the wicketkeeper divides the line segment joining the bowler and the leg slip fielder.

[Hints : Section formula]

5. The position vectors of vertices of ΔABC are $A(2\hat{i} - \hat{j} + \hat{k})$, $B(\hat{i} - 3\hat{j} - 5\hat{k})$ and $C(3\hat{i} - 4\hat{j} - 4\hat{k})$. Find the angles of ΔABC .

[Hints : Use dot product]

6. Show that $\vec{a} + \vec{c} = t\vec{b}$ where t is a scalar if $\vec{a} \times \vec{b} = \vec{b} \times \vec{c} \neq \vec{0}$.

[Hints : Use cross product]

7. Find the point of intersection of the lines: $\vec{r} = (\hat{i} + \hat{j} - \hat{k}) + \lambda(3\hat{i} - \hat{j})$
 $\vec{r} = (4\hat{i} - \hat{k}) + \mu(2\hat{i} + 3\hat{k})$

[Hints : Consider general point and compare \hat{i} , \hat{j} , \hat{k} components]

SECTION - D

Long Answer (LA) (5 marks each questions):

1. For two vectors \vec{a} and \vec{b} , show that $|\vec{a} \times \vec{b}|^2 = \begin{vmatrix} \vec{a} \cdot \vec{a} & \vec{a} \cdot \vec{b} \\ \vec{a} \cdot \vec{b} & \vec{b} \cdot \vec{b} \end{vmatrix}$

[Hints : $|\vec{a} \times \vec{b}| = |\vec{a}| |\vec{b}| \sin\theta$, change $\sin\theta$ to $\cos\theta$]

2. If \vec{a} , \vec{b} and \vec{c} are three unit vectors such that $\vec{a} \cdot \vec{b} = \vec{a} \cdot \vec{c} = 0$ and angle between \vec{b} and \vec{c} is $\frac{\pi}{6}$; prove that, $\vec{a} = \pm 2(\vec{b} \times \vec{c})$.

[Hints : $\vec{a} = \lambda(\vec{b} \times \vec{c})$]

3. If θ be the angle between two unit vectors \vec{e}_1 and \vec{e}_2 , prove that $|\vec{e}_1 - \vec{e}_2| = 2 \sin \frac{\theta}{2}$

[Hints : $\vec{e}_1 \cdot \vec{e}_2$ and $|\vec{e}_1 - \vec{e}_2|^2 = (\vec{e}_1 - \vec{e}_2) \cdot (\vec{e}_1 - \vec{e}_2)$]

4. Using vectors, prove that $\frac{a}{\sin A} = \frac{b}{\sin B} = \frac{c}{\sin C}$.

[Hints : $\vec{a} + \vec{b} + \vec{c} = \vec{0}$; $\vec{a} \times (\vec{a} + \vec{b} + \vec{c}) = \vec{0}$]

5. Using vectors, prove that $a^2 = b^2 + c^2 - 2bc \cos A$

[Hints : $\vec{a} + \vec{b} + \vec{c} = \vec{0}$, $\vec{a} \cdot (\vec{a} + \vec{b} + \vec{c}) = \vec{0}$]

6. Using vectors prove that $a = b \cos C + c \cos B$

[Hints : $\vec{a} \cdot (\vec{a} + \vec{b} + \vec{c}) = \vec{0}$]

7. Using vectors prove that $(a_1 b_1 + a_2 b_2 + a_3 b_3)^2 \leq (a_1^2 + a_2^2 + a_3^2)(b_1^2 + b_2^2 + b_3^2)$

[Hints : $\vec{a} = a_1 \hat{i} + a_2 \hat{j} + a_3 \hat{k}$; $\vec{b} = b_1 \hat{i} + b_2 \hat{j} + b_3 \hat{k}$ apply $\vec{a} \cdot \vec{b}$]

ANSWER

MCQs →

1. (A)
2. (C)
3. (B)
4. (C)
5. (A)
6. (B)
7. (B)

VSA →

1. $\frac{\pi}{2}$
2. $\frac{2}{3}(\hat{i} + 2\hat{j} + 2\hat{k})$
3. $\frac{\pi}{4}$
4. $\sqrt{42}$ units
5. $\frac{\sqrt{14}}{2}$

SA →

1. 1 unit
2. 1 unit
3. $\frac{8}{\sqrt{29}}$ unit
4. 2 : 3 internally
5. $\cos^{-1} \sqrt{\frac{6}{41}}$, $\cos^{-1} \sqrt{\frac{35}{41}}$, $\frac{\pi}{2}$
7. (4, 4, -1)

